Michael Hammer, PhD

Director, Division of Technology and Innovation, Center for Applied Genetics and Genomic Medicine
Research Scientist, Arizona Research Laboratories, Division of Biotechnology
Research Scientist, Neurology, Ecology and Evolutionary Biology, Anthropology, Steele Children's Research Center, BIO5, and the UA Cancer Center
Associate Director, Omics, BIO5 Institute

Michael Hammer is a Research Scientist in the Division of Biotechnology at the University of Arizona with appointments in the Department of Neurology, Ecology and Evolutionary Biology, Bio5, the School of Anthropology, the University of Arizona Cancer Center, and the Steele Children's Research Center. Currently Dr. Hammer is interested in the use of the latest DNA sequencing technology to infer the underlying genetic architecture of neurodevelopmental diseases. Since 1991 Dr. Hammer has directed of the University of Arizona Genetics Core (UAGC), a facility that provides training and molecular biology services to University and biotechnology communities at large. After receiving his Ph.D. in Genetics at the University of California at Berkeley in 1984, he performed post-doctoral research at Princeton and Harvard. Over the past two decades, Dr. Hammer has headed a productive research lab in human evolutionary genetics, resulting in over 100 published articles documenting the African origin of human diversity, interbreeding between modern humans and archaic forms of the genus Homo, and genome diversity in the great apes. His lab and the UAGC were early adopters of next generation sequencing (NGS) technology and the application of whole genome analysis in humans, and his lab has been a key player in the Gibbon and Baboon Genome Projects, as well as a consortium that has analyzed the genomes of over 100 Great Apes (GAPE Project). In the past 3 years, Dr. Hammer's research team has successfully employed NGS methods to identify molecular lesions causing neurodevelopmental disorders in undiagnosed children. This has led to the publication of articles identifying pathogenic variants associated with early onset epileptic encephalopathies. His lab is also currently pursuing studies to identify modifier genes that alter the expression of major genes and how they contribute to phenotypic heterogeneity in Mendelian disorders.

Hammer Lab Website